首页> 外文OA文献 >Turbulent flow separation in three-dimensional asymmetric diffusers
【2h】

Turbulent flow separation in three-dimensional asymmetric diffusers

机译:三维非对称扩散器中的湍流分离

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

Turbulent three-dimensional flow separation is more complicated than 2-D. The physics of the flow is not well understood. Turbulent flow separation is nearly independent of the Reynolds number, and separation in 3-D occurs at singular points and along convergence lines emanating from these points. Most of the engineering turbulence research is driven by the need to gain knowledge of the flow field that can be used to improve modeling predictions. This work is motivated by the need for a detailed study of 3-D separation in asymmetric diffusers, to understand the separation phenomena using eddy-resolving simulation methods, assess the predictability of existing RANS turbulence models and propose modeling improvements. The Cherry diffuser has been used as a benchmark. All existing linear eddy-viscosity RANS models $k-\omega$ SST,$k-\epsilon$ and $v^2-f$ fail in predicting such flows, predicting separation on the wrong side. The geometry has a doubly-sloped wall, with the other two walls orthogonal to each other and aligned with the diffuser inlet giving the diffuser an asymmetry. The top and side flare angles are different and this gives rise to different pressure gradient in each transverse direction. Eddy-resolving simulations using the Scale adaptive simulation (SAS) and Large Eddy Simulation (LES) method have been used to predict separation in benchmark diffuser and validated. A series of diffusers with the same configuration have been generated, each having the same streamwise pressure gradient and parametrized only by the inlet aspect ratio. The RANS models were put to test and the flow physics explored using SAS-generated flow field. The RANS model indicate a transition in separation surface from top sloped wall to the side sloped wall at an inlet aspect ratio much lower than observed in LES results. This over-sensitivity of RANS models to transverse pressure gradients is due to lack of anisotropy in the linear Reynolds stress formulation. The complexity of the flow separation is due to effects of lateral straining, streamline curvature, secondary flow of second kind, transverse pressure gradient on turbulence. Resolving these effects is possible with anisotropy turbulence models as the Explicit Algebraic Reynolds stress model (EARSM). This model has provided accurate prediction of streamwise and transverse velocity, however the wall pressure is under predicted. An improved EARSM model is developed by correcting the coefficients, which predicts a more accurate wall pressure. There exists scope for improvement of this model, by including convective effects and dynamics of velocity gradient invariants.
机译:湍流三维流分离比2-D更为复杂。流动的物理原理还没有被很好地理解。湍流分离几乎与雷诺数无关,并且3-D分离发生在奇异点和沿着从这些点发出的会聚线。大多数工程湍流研究是由对获得可用于改善建模预测的流场知识的需求驱动的。这项工作的动机是需要对非对称扩散器中的3-D分离进行详细研究,使用涡旋解析模拟方法了解分离现象,评估现有RANS湍流模型的可预测性并提出建模改进。 Cherry扩散器已用作基准。所有现有的线性涡流粘度RANS模型$ k- \ omega $ SST,$ k- \ epsilon $和$ v ^ 2-f $都无法预测此类流量,从而无法正确预测分离。该几何形状具有双倾斜的壁,其他两个壁彼此正交并与扩散器入口对齐,从而使扩散器不对称。顶部和侧面喇叭口角不同,这在每个横向方向上导致不同的压力梯度。使用比例自适应模拟(SAS)和大涡模拟(LES)方法进行的涡旋解析模拟已用于预测基准扩散器中的分离并进行了验证。已经产生了具有相同构造的一系列扩散器,每个扩散器具有相同的沿流方向的压力梯度并且仅通过入口纵横比来参数化。对RANS模型进行了测试,并使用SAS生成的流场探索了流物理学。 RANS模型表明,分离表面从顶部倾斜壁到侧面倾斜壁的入口入口宽高比远低于LES结果中观察到的过渡。 RANS模型对横向压力梯度的这种过度敏感性是由于线性雷诺应力公式中缺乏各向异性。流动分离的复杂性是由于横向应变,流线曲率,第二类二次流,横向压力梯度对湍流的影响。利用各向异性湍流模型(如显式代数雷诺应力模型(EARSM))可以解决这些问题。该模型已经提供了对水流和横向速度的准确预测,但是壁面压力却处于预测之下。通过校正系数来开发改进的EARSM模型,该模型可预测更准确的壁压。通过包括对流效应和速度梯度不变式的动力学,存在对该模型进行改进的空间。

著录项

  • 作者

    Jeyapaul, Elbert;

  • 作者单位
  • 年度 2011
  • 总页数
  • 原文格式 PDF
  • 正文语种 en
  • 中图分类

相似文献

  • 外文文献
  • 中文文献
  • 专利
代理获取

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号